436 research outputs found

    Programmable hash functions and their applications

    Get PDF
    We introduce a new combinatorial primitive called *programmable hash functions* (PHFs). PHFs can be used to *program* the output of a hash function such that it contains solved or unsolved discrete logarithm instances with a certain probability. This is a technique originally used for security proofs in the random oracle model. We give a variety of *standard model* realizations of PHFs (with different parameters). The programmability makes PHFs a suitable tool to obtain black-box proofs of cryptographic protocols when considering adaptive attacks. We propose generic digital signature schemes from the strong RSA problem and from some hardness assumption on bilinear maps that can be instantiated with any PHF. Our schemes offer various improvements over known constructions. In particular, for a reasonable choice of parameters, we obtain short standard model digital signatures over bilinear maps

    Encryption schemes secure against chosen-ciphertext selective opening attacks

    Get PDF
    Imagine many small devices send data to a single receiver, encrypted using the receiver's public key. Assume an adversary that has the power to adaptively corrupt a subset of these devices. Given the information obtained from these corruptions, do the ciphertexts from uncorrupted devices remain secure? Recent results suggest that conventional security notions for encryption schemes (like IND-CCA security) do not suffice in this setting. To fill this gap, the notion of security against selective-opening attacks (SOA security) has been introduced. It has been shown that lossy encryption implies SOA security against a passive, i.e., only eavesdropping and corrupting, adversary (SO-CPA). However, the known results on SOA security against an active adversary (SO-CCA) are rather limited. Namely, while there exist feasibility results, the (time and space) complexity of currently known SO-C

    Chosen-ciphertext security from subset sum

    Get PDF
    We construct a public-key encryption (PKE) scheme whose security is polynomial-time equivalent to the hardness of the Subset Sum problem. Our scheme achieves the standard notion of indistinguishability against chosen-ciphertext attacks (IND-CCA) and can be used to encrypt messages of arbitrary polynomial length, improving upon a previous construction by Lyubashevsky, Palacio, and Segev (TCC 2010) which achieved only the weaker notion of semantic security (IND-CPA) and whose concrete security decreases with the length of the message being encrypted. At the core of our construction is a trapdoor technique which originates in the work of Micciancio and Peikert (Eurocrypt 2012

    Tightly Secure Hierarchical Identity-Based Encryption

    Get PDF
    We construct the first tightly secure hierarchical identity-based encryption (HIBE) scheme based on standard assumptions, which solves an open problem from Blazy, Kiltz, and Pan (CRYPTO 2014). At the core of our constructions is a novel randomization technique that enables us to randomize user secret keys for identities with flexible length. The security reductions of previous HIBEs lose at least a factor of Q, which is the number of user secret key queries. Different to that, the security loss of our schemes is only dependent on the security parameter. Our schemes are adaptively secure based on the Matrix Diffie-Hellman assumption, which is a generalization of standard Diffie-Hellman assumptions such as k-Linear. We have two tightly secure constructions, one with constant ciphertext size, and the other with tighter security at the cost of linear ciphertext size. Among other things, our schemes imply the first tightly secure identity-based signature scheme by a variant of the Naor transformation

    CRYSTALS-Dilithium: A lattice-based digital signature scheme

    Get PDF
    In this paper, we present the lattice-based signature scheme Dilithium, which is a component of the CRYSTALS (Cryptographic Suite for Algebraic Lattices) suite that was submitted to NIST’s call for post-quantum cryptographic standards. The design of the scheme avoids all uses of discrete Gaussian sampling and is easily implementable in constant-time. For the same security levels, our scheme has a public key that is 2.5X smaller than the previously most efficient lattice-based schemes that did not use Gaussians, while having essentially the same signature size. In addition to the new design, we significantly improve the running time of the main component of many lattice-based constructions – the number theoretic transform. Our AVX2-based implementation results in a speed-up of roughly a factor of 2 over the previously best algorithms that appear in the literature. The techniques for obtaining this speed-up also have applications to other lattice-based schemes

    The European Portuguese version of the ASAS Health Index for Patients with Spondyloarthritis: Measurement properties

    Get PDF
    Objective: The Assessments of SpondyloArthritis international Society Health Index (ASAS HI), estimates the impact of Spondyloarthritis (SpA) on global functioning and health. This article assesses the construct validity, reliability and responsiveness of the Portuguese version of the ASAS HI. Patients And Methods: Patients fulfilling ASAS classification criteria for axial (axSpA) or peripheral SpA (pSpA) were included. Construct validity was assessed through Spearman’s correlation analysis with other health outcomes. Discriminant validity wastested comparing the ASAS HI across disease activity and functionalstates using the Kruskal–Wallistest. Internal consistency was assessed by Cronbach’s a, and test-retest reliability by intraclass correlation coefficients (ICC). Responsiveness was evaluated by the standardized response mean (SRM) in patients with active disease who required therapy escalation. Results: Among the 91 patients included, 67% were male, mean (SD) age 47.2 (12.9) years, 63 patients with axSpA and 28 patients with pSpA. The hypothesis defined a priori to test construct validity were confirmed. The ASAS HI showed ability to discriminate between patients with different disease activity and functional states (p<0.001). Internal consistency (Cronbach’s a: 0.88) and test-retest reliability [ICC=0.76 (95%CI 0.09-0.91)] were good. Responsiveness was moderate\ud (SRM=-0.53). The smallest detectable change was 3.0. Conclusions: The Portuguese version of the ASAS HI is a comprehensible questionnaire that is valid, reliable and responsive. It can be used to assess the impact of SpA and its treatment on functioning and health, in clinical practice and for research purposes

    On the Gold Standard for Security of Universal Steganography

    Get PDF
    While symmetric-key steganography is quite well understood both in the information-theoretic and in the computational setting, many fundamental questions about its public-key counterpart resist persistent attempts to solve them. The computational model for public-key steganography was proposed by von Ahn and Hopper in EUROCRYPT 2004. At TCC 2005, Backes and Cachin gave the first universal public-key stegosystem - i.e. one that works on all channels - achieving security against replayable chosen-covertext attacks (SS-RCCA) and asked whether security against non-replayable chosen-covertext attacks (SS-CCA) is achievable. Later, Hopper (ICALP 2005) provided such a stegosystem for every efficiently sampleable channel, but did not achieve universality. He posed the question whether universality and SS-CCA-security can be achieved simultaneously. No progress on this question has been achieved since more than a decade. In our work we solve Hopper's problem in a somehow complete manner: As our main positive result we design an SS-CCA-secure stegosystem that works for every memoryless channel. On the other hand, we prove that this result is the best possible in the context of universal steganography. We provide a family of 0-memoryless channels - where the already sent documents have only marginal influence on the current distribution - and prove that no SS-CCA-secure steganography for this family exists in the standard non-look-ahead model.Comment: EUROCRYPT 2018, llncs styl

    CRYSTALS - Kyber: A CCA-secure Module-Lattice-Based KEM

    Get PDF
    Rapid advances in quantum computing, together with the announcement by the National Institute of Standards and Technology (NIST) to define new standards for digital-signature, encryption, and key-establishment protocols, have created significant interest in post-quantum cryptographic schemes. This paper introduces Kyber (part of CRYSTALS - Cryptographic Suite for Algebraic Lattices - a package submitted to NIST post-quantum standardization effort in November 2017), a portfolio of post-quantum cryptographic primitives built around a key-encapsulation mechanism (KEM), based on hardness assumptions over module lattices. Our KEM is most naturally seen as a successor to the NEWHOPE KEM (Usenix 2016). In particular, the key and ciphertext sizes of our new construction are about half the size, the KEM offers CCA instead of only passive security, the security is based on a more general (and flexible) lattice problem, and our optimized implementation results in essentially the same running time as the aforementioned scheme. We first introduce a CPA-secure public-key encryption scheme, apply a variant of the Fujisaki-Okamoto transform to create a CCA-secure KEM, and eventually construct, in a black-box manner, CCA-secure encryption, key exchange, and authenticated-key-exchange schemes. The security of our primitives is based on the hardness of Module-LWE in the classical and quantum random oracle models, and our concrete parameters conservatively target more than 128 bits of post-quantum security
    • …
    corecore